
(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Soil prediction using artificial neural networks and topographic attributes

Claudinei Taborda Silveira a,⁎, Chisato Oka-Fiori a, Leonardo José Cordeiro Santos a, Angelo Evaristo Sirtoli b,
Claudionor Ribeiro Silva c, Mosar Faria Botelho d

a Departamento de Geografia, Setor de Ciências da Terra, Universidade Federal do Paraná, Curitiba, Brazil
b Departamento de Solos, Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, Brazil
c Instituto de Geografia, Universidade Federal de Uberlândia, Campus Monte Carmelo, Brazil
d Universidade Tecnológica Federal do Paraná, Campus Dois Visinhos, Brazil

a b s t r a c ta r t i c l e i n f o

Article history:
Received 23 August 2011
Received in revised form 9 November 2012
Accepted 20 November 2012
Available online xxxx

Keywords:
Pedometry
Pedological cartography
Relief
DTM

Because relief maps show a strict relationship with soils at different spatial levels, distributions of soil units
can be inferred from digital topography analyses. Geoprocessing techniques can be used to create parametric
relief representations from digital terrain models (DTMs), and these models can be used to calculate primary
and secondary topographical attributes, such as the elevation, profile and plan curvature, slope, stream power
index, topographic wetness index, and sediment transport index. The classic method of pedological cartogra-
phy is onerous and time-consuming; as an alternative, pedometric techniques favor the recognition of pre-
liminary mapping units. In this study, a multilayered perceptron artificial neural network (ANN) with an
error backpropagation algorithm was used, where topographical and geological attributes were used as
input parameters. The classified map was validated by comparison with two preexisting conventional ground
maps of the study area. The kappa (K) index, global exactness (GE), and exactness from the point of view of
the producer and user were considered in the comparison. The quality of the soil units classified by the ANN
was satisfactory, based on the K and GE values from the comparison.

© 2012 Published by Elsevier B.V.

1. Introduction

Despite a large demand for pedological cartography in Brazil, prin-
cipally at detailed levels, several factors, such as the high cost of sur-
veys, the vast territorial extent of areas to be mapped, and the
difficulty of accessing certain areas, limit its application. Furthermore,
the precision of information, the trustworthiness of qualitative inter-
pretations, and the difficulty of extrapolating information to other
areas pose challenges (Mendonça-Santos and Santos, 2003).

According to Santos (2007), only 35% of soils in the whole of Brazil
have been mapped at exploratory and schematic levels (scales from
1:1,000,000 to 1:5,000,000) or at medium and small scales (1:100,000
to 1:600,000).

Currently, several methods are used to assist pedological cartogra-
phy. These tools offer support for larger scale ground mapping, facil-
itate the determination of more precise unit limits, and provide more
efficiency with lower financial costs. One such method is the digital
mapping of reliefs, which uses quantitative techniques to predict
soil-mapping units.

Digital techniques are becoming more prevalent as a result of
advances in informatics that allow for rapid, accessible applications

of existing mathematical and statistical methods being used by soil
scientists for the last few decades (McBratney et al., 2003).

New methods for digital ground mapping are being rapidly devel-
oped. Twomain groups of auxiliary techniques have played an impor-
tant role: a) orbital remote sensing images and b) topographic
attributes derived from digital terrain models (DTMs) (Dobos et al.,
2000). The latter method is used to identify homogeneous landscape
units, which are supported in morphological relief models calculated
from DTMs. It can be used to predict ground mapping because the
positions of the soils in the section influence the pedogenic processes.
Thus, topographic attributes can be applied to distinguish between
pedological classes.

Relief digitalmodeling is one of themost common quantitative tech-
niques used to predict soil attributes and classes (McKenzie et al., 2000).
This method uses relief parameterization (Wood, 1996), where the pri-
mary and secondary topographic attributes are calculated, obtained in
DTM.

The principal merit of digital terrain analysis is its support during
the field work stage. This identification phase of preliminary units
during data acquisition is supported by the use of a previously devel-
oped soil occurrence model (Ippoliti et al., 2005). Methodologies to
predict soil units, derived from these standards, are efficient, increas-
ing the speed of pedological surveys (Hermuche et al., 2002).

Researchers have shown that the spatial distribution of topo-
graphic attributes can be used to efficiently characterize relief mor-
phology, that relief characteristics influence the distribution of soils,
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and that predictive parametric soil models can aid pedological
cartography.

It is worth highlighting experiments that were fundamental for
this work. Zevenbergen and Thorne (1987) have shown the contribu-
tion of the quantitative analysis of land surface topography by using
topographic indices. Klingebiel et al. (1987) employed geomorpholo-
gic variables in order to define soil units. Dikau (1989) has shown
how the digital analysis of the terrain can be applied to the relief by
using topographic feature quantification through the definition of
basic unities for geomorphologic and pedologic mapping. Moore et
al. (1991) have shown a set of primary and secondary topographic
attributes obtained from digital terrain model for application in geo-
morphology and hydrology. Odeh et al. (1991) have verified that
the variable slope, plan and profile curvature, extension of the slope
and area of the top contributed to explain most of the variation of
soils in their approach. Moore et al. (1993) have found significant cor-
relation between the soil and the quantified terrain attributes whose
variable slope and the wetness level showed greater correlation with
the soil attributes. In the same perspective Gessler et al. (1995) have
developed a statistic soil-landscape model, using different terrain
attributes, such as: plan curvature and composed topographic index
in order to estimate the soil characteristics. McKenzie and Ryan
(1999) have employed environmental correlation as a method for
spatial prediction of soil properties, and observed the relationship
between the wetness and slope level with the density of the soil.

Recent works developed in Brazil that have contributed were
those of Sirtoli et al. (2008a) who have shown relationships between
the soil units and the relief attributes. Muñoz (2009) who presented
the relationships between the geomorphometric variables obtained
from the DEM SRTM90 with a pedologic data gathering on the scale
of 1:100,000. Hermuche et al. (2002, 2003) have used the topograph-
ic attributes in RGB composition in order to define the soil units, later
comparing them to a map on the scale of 1:50,000. Ippoliti et al.
(2005) have identified geoforms and pedoforms through elevation,
slope and curvature. Chagas (2006) has classified soil units with topo-
graphic attributes through ANN and the Maximum Likelihood classi-
fier, comparing them to the conventional map on the scale of
1:50,000. Crivelenti (2009) has used the parameters of slope, plan
and profile curvature, integrating them through trees of decision in
order to make a map of soils in the scale of 1:50,000. Sirtoli et al.
(2008b) have determined the soil units with a combination of the
secondary topographic attributes and Silveira et al. (2012) have
used stream power index, wetness index, and sediment transport
index with slope, integrated through the means of crossed tabulation
obtaining soil units that compared to a pre-existing map on the scale of
1:10,000 presented global accuracy 0.69 and coefficient Kappa 0.43.

Based on these observations, the objective of this research was to
predict preliminary soil mapping units. The prediction was part of a
digital relief analysis process that included seven topographical and
geological attributes and was integrated into an artificial neural net-
work (ANN).

ANNs provide advantages compared to image classifiers based on
statistical concepts because no prior assumptions about the distribu-
tion of the data to be sorted are required (Sirtoli, 2008). Several stud-
ies have successfully used ANNs to support the identification of soil
mapping units in Brazil (Chagas, 2006; Silveira, 2010; Sirtoli, 2008).

A study area that included the Corvo stream hydrographic basin
was selected because it provided an adequate cartographic basis for
the study objectives, with topographical maps at a 1:10,000 scale.
Two conventional soil maps at 1:10,000 and 1:35,000 scales exist
for this area, and these maps were used to validate the preliminary
soil mapping units generated by the proposed method. The site has
an area of 447.3 ha and is located in the city of Pinhais, in the state
of Paraná, Brazil (Fig. 1).

The study area is situated in the Curitiba sediment basin, primarily
in the Guabirotuba Formation and secondarily in the restricted plains

area of theHolocene sediments. TheGuabirotuba Formationwas formed
in successive erosive phases. It is predominantly composed of green silt
and clay deposits arranged in an interdigitated or abrupt gradation,
depending on the local stratigraphic and structural characteristics, and
is interlaced with arkosic sands and, occasionally, gravel; quartz pebble
is predominant (Salamuni et al., 1999). The Holocene sediments are
derived from the erosion and deposition of older weathered lithologies,
formed by hydraulic-depositional conditioning of drainage from rivers
and flood plains (Mineropar, 2001).

2. Method

2.1. Obtaining topographic attributes

A DTM was generated to represent the topographical elevation by
extracting vectoral planialtimetric data from topographical sheets, at a
scale of 1:10,000 (COMEC (Coordination of the Curitiba Metropolitan
Region) (1976)). Other primary attributes, including the slope, profile
and plan curvature, and secondary attributes, including the stream
power index, wetness index, and sediment transport index, were
derived from the DTM. These procedures were carried out using the
software MatLab (Mathworks, 2007).

The topographic attribute extraction operations were executed
using a movable window with nine cells (3×3) shifted sequentially
on the total set of DTM data. This method calculates the parameters
of a central cell while considering the surrounding cells (Fig. 2).

Slope was determined from the DTM using two local finite differ-
ences in the x and y directions (Horn, 1981):

β ¼ arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2x þ f 2y

q� �
ð1Þ

where β represents the local inclination of the terrain, and fx
2 and fy

2

are approximations of the finite differences calculated by means of
the partial derivatives fx and fy in the x and y directions (orthogonal
to each other), respectively. The partial derivatives were determined
by Eqs. (2) and (3), where λ is the width of each cell.

f x ¼
∂z
∂x ¼ Z6−Z4

2λ
ð2Þ

f y ¼
∂z
∂y ¼ Z2−Z8

2λ
: ð3Þ

The profile curvature (φ) and plan curvature (ψ)were defined based
on the finite difference values in the x and y directions (Moore et al.,
1993; Zevenbergen and Thorne, 1987) and the second partial deriva-
tives, as shown in Eqs. (4), (5) and (6).

f xx ¼
∂2z
∂x2

¼ Z4 þ Z6−2Z5

λ2 ð4Þ

f yy ¼
∂2z
∂y2

¼ Z2 þ Z8−2Z5

λ2 ð5Þ

f xy ¼
∂2z
∂x∂y ¼ −Z1 þ Z3 þ Z7−Z9

4λ2 : ð6Þ

Thus, the profile (φ) and plan curvature (ψ) were determined
by Eqs. (7) and (8), respectively (Moore et al., 1993; Zevenbergen and
Thorne, 1987).

ϕ ¼
−2 f xxf x2 þ f xyf xf yþ f yyf y2

� �
f x2 þ f y2

ð7Þ
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ϖ ¼
2 f xxf y2−f xyf xf yþ f yyf x2
� �

f x2 þ f y2
: ð8Þ

The stream power index (Ω) was defined as the product of the spe-
cific contribution area (Ac) and the tangent of the slope (β), according to
Eq. (9) (Moore et al., 1991).

Ω ¼ Ac tan β ð9Þ

where Ac is the specific area of contribution for the central point of the
window (Eq. (10)).

Ac ¼ 3λ3λð Þ: ð10Þ

The wetness index is defined by the natural logarithm of the ratio
between the contribution area (Ac) and the tangent of the slope (in
degrees), according to Eq. (11) (Moore et al., 1991).

w ¼ ln
Ac

tan β

� �
: ð11Þ

The variables considered in the sediment transport index (τ) were
the specific contribution area (Ac) and the sine of the slope sin β,
described in Eq. (12) (Moore et al., 1991).

τ ¼ Ac

22:13

� �m sinβ
0:0896

� �n

: ð12Þ

The values of the constants m and n are 0.6 and 1.3, respectively.

2.2. Architecture and structure of the ANN

The ANN used to classify the preliminary soil mapping units, by
means of the MatLab module Neural Network Toolbox (Mathworks,
2007), is composed of four layers: 1) an input layer with eight neu-
rons that correspond to the seven topographical variables: elevation,
slope, profile and plan curvature, stream power index, wetness index
and sediment transport index, as well as the variable geology; 2) a
first hidden intermediate layer with 130 neurons, a number deter-
mined through trial and error, as suggested by Hirose et al. (1991),
by adding or removing neurons in the hidden layers based on the
behavior of the error during the training phase; 3) a second hidden
layer with 43 neurons, a number determined by observing the
Hilton rule (1989), which states that, in the case of two intermediate
layers, the number of second-layer neurons should not be greater
than one-third of the number of neurons in the first; and 4) an output
layer with three neurons that represent the soil classes.

The ANN uses a multilayer perceptron feed-forward architecture with
a sigmoidal transference function and a learning logarithm for the
backpropagation of error, resilient propagation variation (RPROP). In this
algorithm, the weights of the connections are adjusted by feedback until
convergence is achieved, where this determines the backpropagation of
the error. Two steps are executed in the different net layers: “one step for-
ward”, or propagation, and “one step backwards”, or backpropagation. In
the propagation step, the weights of the connections are fixed. In the
backpropagation step, the synaptic weights are adjusted by an error cor-
rection rule that consists of the difference between the output response of
the network layer in question and the desired response. This produces an
error signal, which is propagated backwards bymeans of the network in a
direction opposite to that of the synaptic connections (Haykin, 2001).

The RPROP variation was developed by Reidmiller and Braun
(1993) to minimize oscillations in the weight adjustments during
ANN training and to achieve the lowest number of iterations and

Fig. 1. Location of the study area.

Z1 Z2 Z3

Z4 Z5 Z6

Z7 Z8 Z9

Fig. 2. Window with nine cells (3×3).
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the smallest average quadratic error (AQE) (Ribeiro, 2003). In this
research, the threshold adopted for the AQE was 0.001.

For Chagas (2006), determining the learning rate for a specific prob-
lem is not a simple task because themost typically used values are in the
range of 0.1 to 1.0. In this study, the learning ratewas determinedwith a
minimum value of 0.1, corresponding to the maximum number of iter-
ations, 15,000. The real-time rate of errors committed during learning
(“momentum”) must be at least 0.09, and the learning error (“perfor-
mance”) must be less than 0.0001.

2.3. Validation of the preliminary soil mapping units

The preliminary soil mapping units classified by the ANN were vali-
dated by comparison with two preexisting soil maps, which were gen-
erated using conventional techniques. These maps, which covered the
entire study area, were produced by Rocha (1990) at a 1:10,000 scale
(Fig. 3-A) and by LIMA (2005) at a 1:35,000 scale (Fig. 3-B).

The results were quantitatively measured by error matrix analysis
using the kappa index and the global exactness (GE) and accuracy
from the points of view of the user and the producer. Qualitative
interpretations of the kappa coefficient were based on ranges that
represent image quality, according to Landis and Koch (1977)
(Table 1).

3. Results and discussion

Based on the topographic attributes of the study area, the measured
elevation, slope (α), topographic wetness index (w), stream power
index (Ω), sediment transport index (τ), plan curvature (ψ), and profile
curvature (φ) values varied between 884 and 954 m above sea
level, 0 and 50%, 6 and 26, 0 and 118, 0 and 34, −1.814 and 1.410,
and −1.051 and 1.154°/m respectively. Fig. 4 shows the frequency
histogram of these attributes.

Based on the network trained with the best combination of vari-
ables according to Silveira (2010), the parameters were applied to
the entire data set during simulation of the ANN, and three prelimi-
nary soil classes in the basin were delineated: Oxisols, Inceptisols,
and Histosols+Gleys (Fig. 5).

The preliminary soil map, classified by the ANN, was compared
with two existing soil maps of the area to validate the classification.
Two comparative sets were distinguished, comparison 1 and compar-
ison 2. In the first, the preliminary map was overlaid and analyzed
with pre-existing map 1; in the second, the map was overlaid and
analyzed with pre-existing map 2.

Comparison 1 showed the greatest similarity, with 72% agreement
between the mapped units, whereas comparison 2 showed 65% agree-
ment. The kappa coefficient values obtained in the two comparisons
indicated good quality, according to the quality classes presented by
Landis and Koch (1977) (Table 1). The kappa values were 0.56 and
0.48 for preexisting maps 1 and 2, respectively.

From the error matrices, percentage values were obtained for user
(UE) and producer (PE) exactness between the classes; the map clas-
sified by the ANN represented the producer's point of view, and the
pre-existing maps represented the user's point of view.

In the error matrix for comparison 1 (Table 2), the classified units
have elevated PE and UE values. The errors were not concentrated in
any single class; thus, the soil units classified by the ANN did not dif-
fer from those of preexisting map 1, except for a divergence in the
delineated limits associated with the proper pedological traditional
cartography, in which spatial units are determined by a discrete
model of spatial variability. In this model, soil type is assumed to
change abruptly, which does not occur in reality because the varia-
tions are gradual. Subjectivity in the tracing of limits between soil
units, therefore, differentiates the units of map 1 from those classified
by the ANN. The results of the verified unconformities were small

Fig. 3. Pre-existing soil mappings at the order level.

Table 1
Image classification quality according to kappa index intervals.
Source: Adapted from Landis and Koch (1977).

Kappa coefficient Image quality

Less than 0 Very poor
0.01–0.20 Poor
0.21–0.40 Reasonable
0.41–0.60 Good
0.61–0.80 Very good
0.81–1.00 Excellent

168 C.T. Silveira et al. / Geoderma 195-196 (2013) 165–172
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polygons that represented areas with interpretation divergence
(Fig. 6-A).

In the error matrix of comparison 2 (Table 3), the divergences are
concentrated mainly in the Oxisol class, with a low PE (39%), and the
Histosol+Gley class, with a low UE (57%). The low exactness of the
Oxisol class was associated with the disagreements shown in regions
1, 3, 8, 9, and 11 (Fig. 6-B), in which interpretations were conflicting.
In pre-existing map 2, these areas represent the Histosol+Gley class,

and in the map classified by the network, they represent Oxisols.
These disagreements are associated with the generalization of scale
shown in comparison 2. Here, the hydromorphic soil limits were
overestimated, resulting in low UE values for this class.

Other nonconformities between the maps correspond to non-
mapped areas, such as Lima's (2005) interpretation of Oxisols in the
top position of map 2 (regions 4 and 14) as Inceptisols due to the
presence of elevated clay activity values in the analyzed samples.

Fig. 4. Frequency histogram of the topographic attributes.
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However, the author of this mapping emphasized that the morpho-
logic characteristics of this soil are similar to those of Oxisols. The
other verified disagreements were associated with the degree of accu-
racy attained in tracing the limits of the classes between the compara-
tive maps.

When analyzing the inclusion and omission errors of the classes
mapped by the ANN compared to those of preexisting maps 1 and 2
(Table 4), the Inceptisol class exhibited an average inclusion error
(In. E.) of 0.28 and an average omission error (Om. E.) of 0.33. The low-
est In. E. and Om. E. of the Inceptisol class were inmapping 2 (0.17) and
mapping 1 (0.31), respectively. These values demonstrate the efficiency
of the unit mapping prediction.

In the Oxisol class, the average In. E. and Om. E. values, obtained in
the comparison with the pre-existing soil maps, are 0.42 and 0.28,
respectively (Table 4). The average inclusion value is greater than
that verified in the Inceptisol class. However, this was a result of the
elevated In. E. value of 0.61 obtained from map 2. In map 2, the limits
of this unit were underestimated, and the hydromorphic character of
the soils was not mapped in the interfluvials or at the tops of the
slopes. In map 1, the principal divergence was linked to the contour
limits between the classes.

The lowest average In. E. value of 0.19 was found in the Histosol+
Gley class (Table 4), demonstrating that the classified limits of this

Fig. 5. Map of the preliminary soil mapping units classified by the ANN.

Table 2
Error matrix from comparison 1.

Soil class Preexisting conventional mapping 1

Histosols+Gleys Oxisols Inceptisols PE

Mapping
classified
by the
ANN

Histosols+Gleys 30,243 6412 2958 76%
Oxisols 3858 60,649 14,194 77%
Inceptisols 3172 19,693 37,909 62%
UE 81% 70% 69% GE=

0.72

Legend: PE — producer exactness; UE — user exactness; GE — global exactness.

Fig. 6. Comparison between the preliminary soil units and pre-existing maps 1 and 2.
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class were not overestimated on the conventional maps. Map 2
presented the poorest Om. E. results (0.43) due to the generalization
of the Histosol+Gley class delimitation, a problem not associated
with scale differences.

In validating the units predicted by the ANN, the classified soil map
was shown to be adequate in comparisonwith the pre-existing conven-
tional maps, with justified exceptions, principally in the determination
of necessary limits between units. The classes determined by the ANN
were shown to be satisfactory in the validation process relative to the
pre-existing conventional maps.

A third comparison was carried out considering the differences
between the pre-existing soil maps. The obtained GE and kappa coef-
ficient values were 0.63 and 0.46, respectively, which, according to
the Landis and Koch classification (1977), signifies good correspon-
dence between the compared images.

The error matrix of comparison 3 (Table 5) shows exactness values
of the classes from pre-existing map 1 in relation to the same classes
from pre-existing map 2 (ExClssMp1-2) and of map 2 in relation to
map1 (ExClssMp2-1). The lowestmatrix value of 37%was for theOxisol
of the ExClssMp1-2; however, this class in the ExClssMp2-1 had a value
of 79%. This was due to the identification of a larger area of Oxisols (48%
of the basin) in map 1 as compared to map 2 (22% of the basin). In the
firstmap, this soil class includes the peaks and lower thirds of the slopes
and the intermediate positions of the relief with less slope (Fig. 3-A). In
the secondmap, these soils are more restricted to the lower third of the
slopes (Fig. 3-B). Consequently, the areas of the Inceptisol and
Histosol+Gley classes are larger in map 2, representing 44% and 34%
of the basin, respectively. In map 1, these classes correspond to 31%
and 21% of the area, respectively. Thus, these two soil classes caused

the low values of the error matrix of ExClssMp2-1, with 54% in the
Histosol+Gley class and 61% in the C class.

From the overlapping of the two maps, the divergence found in
region 14 (Fig. 7) corresponded to the disagreement of Oxisols situat-
ed in the top position of mapping 1 in relation to mapping 2, where
the soil was classified as Inceptisols. According to the author of map
2, the watersheds in the basin were relatively narrow; therefore,
this area does not exhibit conditions for more evolved soil formations,
such as Oxisols, despite similar morphological characteristics (LIMA,
2005). Thus, the Oxisols located in the watersheds of map 1 (Fig. 3-A)
are not present in map 2 (Fig. 3-B).

The disagreements verified in regions 1, 3, 8, 9, and 11were a result of
the discordant interpretations of Oxisol in map 1 for the Histosol+Gley
class in map 2, where regions 2 and 5, classified as Oxisols in map 1, are
Inceptisols inmap2 (Fig. 6). The conflicts evidenced in these regionsmay
be associated with differences in map scale and, therefore, in the level of
detail; map 1 has a scale of 1:10,000, whereas map 2 has a scale of
1:35,000.

4. Conclusions

The use of ANN demonstrated potential in classifying preliminary
soil mapping units using geomorphometry techniques.

During the validation step, the areas for which the mapped units
diverged from the pre-existing maps were determined to be located
in the peak and watershed positions. These areas were classified as
small-class polygons of Histosol+Gley soils in areas of predominantly
Oxisol soils, and small Inceptisol polygons in areas of predominantly
Histosol+Gley soils. The inconsistencies identified in the predictions
at the peaks and valley depthswere associatedwith the degree of carto-
graphic generalization at the 1:10,000 scale, which does not allow for
the altimetric representation of intermediate values to within 5 m of
the vertical equidistance between level curves. However, the use of var-
iable geology contributed to a more accurate delimitation of the map-
ping units in these areas.

In the comparison between the ANN classification and the pre-
existingmappings, the ANNmap showed greater similarity to mapping
1 (comparison 1), with GE and kappa values of 0.72 and 0.56, respec-
tively. The two conventional maps showed less agreement, with GE
and kappa values of 0.77 and 0.65, respectively.

The advantages of the ANN classification included the following:
a) decreased subjectivity in the determination of limits between
mapping units; b) the ability to consider a greater number of classifi-
cation variables; c) elimination of the need for pre-existing ground
mappings in the study area or in contiguous areas with equivalent
environmental characteristics to guide the understanding of relations
between the soil and the landscape; d) elimination of the need to
discretize the topographic attributes in a class to assess relationships
with alreadymapped soil units (i.e., the formulation of prior hypotheses
is unnecessary); e) assignment of random weights based on training
samples, which reduces errors in the operation process; and f) the abil-
ity to use the tested network architecture application to predict soil
units in homologous regions.

Table 3
Error matrix for comparison 2.

Ground class Preexisting conventional mapping 2

Histosols+Gleys Oxisols Inceptisols PE

Mapping
classified
by the
ANN

Histosols+Gleys 34,567 2774 2208 87%
Oxisols 22,910 30,364 25,286 39%
Inceptisols 2906 7148 50,605 83%
UE 57% 75% 65% GE=

0.64

Legend: PE — producer exactness; UE — user exactness; GE — global exactness.

Table 4
Errors of inclusion and omission between the preliminary units and the preexisting maps.

Units Preexisting
mapping 1

Preexisting
mapping 2

Average

In. E. Om. E. In. E. Om. E. In. E. Om. E.

Mapping
classified by
the ANN

Histosols+Gleys 0.38 0.31 0.17 0.35 0.28 0.33
Oxisols 0.23 0.30 0.61 0.25 0.42 0.28
Inceptisols 0.24 0.19 0.13 0.43 0.19 0.31

Legend: In. E. — inclusion error; Om. E. — omission error.

Table 5
Error matrix of comparison 3.

Ground class Conventional mapping 2

Histosols+Gleys Oxisols Inceptisols ExClssMp1-2

Conventional mapping 1 Histosols+Gleys 32,529 3059 1669 87%
Oxisols 25,871 31,941 28,843 37%
Inceptisols 1983 5285 47,586 87%
ExClssMp2-1 54% 79% 61% GE=0.63

Legend: ExClssMp1-2 — exactness of the classes in mapping 1 in relation to the same class of mapping 2; ExClssMp2-1 — exactness of the classes in mapping 2 in relation to the
same class of mapping 1; GE — global exactness comparison 1.
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